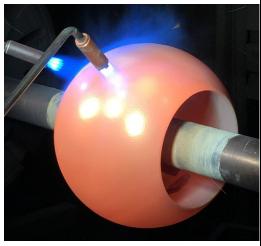


# Surface Technologies Surface Engineering Solutions – Valve Systems

#### **Thermal Spray**

Thermal Spray in general terms is a process utilized to improve the surface properties of a component by applying metallic and nonmetallic coatings to its surface. There are many Thermal Spray processes available, each exhibiting unique operating characteristics that produce distinct operating conditions and a versatile range of subsequent coating properties. These processes include, but aren't limited to, Twin Wire Arc Spray, Combustion Spray, Air and Vacuum Plasma Spray and High Velocity Oxygen Fuel (HVOF). Coatings properties such as hardness, density, adhesion strength etc. can be manipulated and applied to resist corrosion, oxidation and many different tribological wear mechanisms. One of the main advantages of thermal spray as a solution over alternate surface engineering processes is the minimization of heat input into the component substrates. This ensures the mechanical and chemical properties are appropriately maintained.

#### Laser Cladding


An alternate option to Thermal Spray when high adhesion and thick deposits are required is Laser Cladding. Essentially a welding process, the laser generates a focused beam of light to generate heat to deposit metallic and inter-metallic materials to a substrate. With considerably lower heat input to the substrate, when compared to traditional welding processes, it results in a minimal Heat Affected Zone to the base material while still achieving a metallurgical bond with the substrate.



Laser cladding of shaft journal.

### Severe Service Valve Coatings

As technology advancements in next generation valves develop to operate in increasingly aggressive service conditions, engineered surfaces are becoming ever more important in the operation and function of the valve components. Thermal Spray and weld solutions are designed into valve components to extend service life and improve efficiency and safety of the valve systems.



Spherical ball being sprayed and fused.

For decades, Curtiss-Wright has been the industry vanguard for cultivating new coating technologies across a broad range of ball valve types, sizes and substrates. Considering the harshness of some of these operating environments, we work collaboratively with our customers to achieve unique coating properties that include corrosive, abrasive and erosive wear resistance, as well as thermal protection.

Our technological development also includes advances in finishing and sealing technologies. We have engineered innovative solutions to achieve the finishes required to seal these components at extreme temperatures and pressures.

#### Finishing

The development of our spherical CNC machining capabilities has produced unique methods for machining coatings exhibiting macro-hardness in excess of 60HRC. Our spherical grinding expertise is consistently capable of producing near perfect spheres on ball components with carbide and ceramic coatings that exhibit micro-hardness values in excess of 1400HV <sub>300</sub>.

Achieving the seals required for elevated temperature and high pressure applications requires advanced lapping techniques. Our latest evolution in lapping technology incorporates substantial improvements over traditional equipment design. Depending on the valve design, this equipment is capable of lapping two seats simultaneously to ensure 100% complete sealing on any surface of the ball circumference.

This not only reduces overall lapping time but also removes much of technique dependency exhibited by previously used lapping techniques.



Ball and seat valve coated, finish grounded and lapped.

The technology is capable of consistently meeting or exceeding any customer requirement.

Surface Technologies Division of Curtiss-Wright is here to provide solutions for any surface engineering challenges. Our group delivers innovative solutions for surface engineering needs, providing services to the commercial, industrial, military and energy markets. Building on the heritage of Glenn Curtiss and the Wright brothers, Curtiss-Wright has a long tradition of providing reliable solutions through trusted customer relationships.

| Coating<br>Code    | Nominal<br>chemistry                                               | Description                                                                                                         | Micro-<br>hardness<br>(HV <sub>300</sub> ) | Best<br>finish<br>( <i>µ</i> in<br>Ra) | Bond<br>strength<br>(Psi) | Max.<br>temp<br>(°F) |
|--------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------|----------------------|
| 216 / 819          | Cr Mo Si B Fe<br>Cu C Ni-Base                                      | Nickel based hard surfacing alloy for corrosion and oxidation resistance                                            | 800                                        | 4                                      | >40,000                   | 1,200                |
| 238 / 838          | Cr W Si Fe B<br>C Ni- Base                                         | Nickel based hard surfacing alloy for<br>high abrasion, heat and fretting corrosion                                 | 750                                        | 4                                      | >40,000                   | 1,400                |
| 217 / 850          | Cr Ni W B Si Fe<br>C Co-Base                                       | Cobalt base alloy with good metal- to-metal wear resistance for corrosive and high temperature                      | 750                                        | 4                                      | >40,000                   | 1,800                |
| 221 / 855          | W Cr Ni B C Fe<br>Co-Base                                          | Cobalt base alloy with high metal- to-metal wear resistance for corrosive and high temperature                      | 690                                        | 4                                      | >40,000                   | 1,800                |
| 262                | Та                                                                 | Tantalum for severe corrosion protection                                                                            | 600                                        | N/A                                    | 7,500                     | 375                  |
| 831 / 931          | Cr <sub>2</sub> C <sub>3</sub> /NiCr                               | Hard carbide for hot wear and erosion                                                                               | 800                                        | 4                                      | >10,000                   | 1,500                |
| 801 / 901          | WC Co                                                              | Good sliding wear, abrasion and fretting resistance                                                                 | 900                                        | 2                                      | >10,000                   | 1.000                |
| 817 / 917          | WC Co                                                              | Wear , abrasion resistance with High toughness, ductility and high fretting resistance                              | 900                                        | 2                                      | >10,000                   | 1.000                |
| 815 / 915          | WC Co Cr                                                           | Tungsten carbide for severe wear resistance                                                                         | 1050                                       | 3                                      | >10,000                   | 1000                 |
| 825 / 925          | WC Ni                                                              | Tungsten Carbide with nickel matrix for exceptional wear service                                                    | 1,000                                      | 1-2                                    | >10,000                   | 1,000                |
| 827 / 927          | WC Hastelloy                                                       | Tungsten carbide alloy with hastelloy for wear and severe corrosive resistance                                      | 1,000                                      | 2                                      | >10,000                   | 1,000                |
| 205NS /<br>205SFP  | Al <sub>2</sub> O <sub>3</sub>                                     | Pure alumina as dielectric or to resist corrosive wear                                                              | 1,100                                      | 4                                      | 4,500                     | 3,000                |
| 202                | TiO <sub>2</sub>                                                   | Titanium dioxide for sliding wear resistance and resistance against many corrosive media                            | 900                                        | 2                                      | 10,000                    | 1,000                |
| 600 / 206 /<br>208 | Cr <sub>2</sub> O <sub>3</sub>                                     | Chromium oxide is hard, wear resistant and chemically inert. Resists acids, alkalis and alcohols.                   | 1,100                                      | 4                                      | 10,000                    | 1,000                |
| 202F               | Cr <sub>2</sub> O <sub>3 –</sub> TiO <sub>2</sub><br>(Proprietary) | Chromia-Titania is for Corrosion and abrasion resistance, can resist HPAL<br>Environments. High fracture toughness. | 950                                        | 2                                      | >10,000                   | 1,000                |

**Curtiss-Wright Surface Technologies** (CWST) is a provider of value added surface treatment technologies, including engineered coatings, shot peening, laser peening and materials testing, for demanding industrial applications. With a network of over 75 facilities located in North America, Europe and Asia, Curtiss-Wright Surface Technologies is a Division of the **Curtiss-Wright Corporation** (NYSE:CW), a diversified global provider of highly engineered products and services.

| Curtiss-Wright                    |
|-----------------------------------|
| Surface Technologies Division     |
| 12 Thompson Road                  |
| East Windsor, CT 06088            |
| T: 860.623.9901   F: 860.623.4657 |
| FAA Repair Station #G2PR726J      |
| EASA.145.4482                     |

#### Curtiss-Wright Surface Technologies Division 25 Southbelt Industrial Drive Houston, TX 77047 T: 713.225.0010 F: 713.229.9841

## Curtiss-Wright

Surface Technologies Division 201 Ballardvale Street Wilmington, MA 01887 T: 978.658.0032 | F: 978.658.0572

## Curtiss-Wright

Surface Technologies Division 199 Ridgeview Center Drive Duncan, SC 29334 T: 864.486.9311 | F: 864.486.9307

#### Curtiss-Wright

Surface Technologies Division 3626 West Osborn Road Phoenix, AZ 85019 T: 602.244.2432 | F: 602.267.0020