

EADS INNOVATION WORKS

LSP to improve the fatigue resistance of highly stressed AA7050 components

Ulrike C. Heckenberger, Elke Hombergsmeier, Wolfgang v. Bestenbostel, Vitus Holzinger

2nd International Conference on Laser Peening 2010, San Francisco

Outline

- Which kind of set-up has been chosen?
 - Specimen geometry
 - LSP parameters
- How do the LSP parameters influence the residual stress profile?
- How large is the fatigue life enhancement, esp. for SP and LSP?
- What is the reason for the fatigue life enhancement?
- Does the RS influence the crack initiation or the crack growth?
- What did we conclude?

EADS

Objective

- Improve the fatigue life of AA7050 components
- → Improve the fatigue life via compressive residual stresses.
- Compare the fatigue life enhancement for different depths of the residual stresses introduced by:
 - the shot peening process,
 - the laser shock peening process.

Specimen geometry

Area treated to introduce residual stresses - by shot peening (SP), - by laser shock peening (LSP).

LSP Processing

Distortion due to residual stresses (specimen 2b)

Top view of the delivered specimens

Residual stress measurement – XRD device

D5000 Euler Craddle

X-ray tube: Cu 1.5406
Peak location method: Sliding gravity.
Reflection Al-peak used: [4,2,2] at 20: 137.5°
Gauge area: 2-3 mm
Psi range: -45° ... 45° 11 steps.

XRD results – Influence of position

• Variations of residual stresses are correlated to the spot size.

Residual stress measurement

Incremental centre hole drilling (ICHD) - set-up

Ø 1.9 mm hole milled

strain gauge measuring the released strains

ICHD results – Influence of position

• Large differences of the residual stress at the surface decreasing to +/- 25 MPa at a depth of 300 $\mu m.$

ICHD results – Influence of position

• Large differences of the residual stress at the surface decreasing to +/- 25 MPa at a depth of 300 $\mu m.$

ICHD results – Influence of number of layers

- Reduction of number of layers appears to have no influence on the residual stress at the surface.
- Reduction of number of layers leads to a faster decrease of the compressive stresses with increasing depth.

ICHD results – Influence of number of layers

- Reduction of number of layers appears to have no influence on the residual stress at the surface.
- Reduction of number of layers leads to a faster decrease of the compressive stresses with increasing depth.

ICHD results – Influence of energy

• Up to a depth of 1.0 mm the increase of energy does not show too much benefits.

G Let's go for: 4 − 18 − 3

LSP Processing

"first approach": 50% off-set

check after two layers result for three layers

"final pattern": 30% off-set

check after two layers

Let's go for the final pattern. (P)

LSP Processing – Roughness

"first approach"

"final pattern"

- Max. roughness R_t alleviated by new pattern.
- Max. roughness R_t pushed below 15 μ m.

Roughness profile of reference specimens

- Roughness typical for a milled surface: Ra=0.6 µm.
- Roughness increased due to shot peening.

Roughness profile for SP and LSP treatments

- Max. roughness R_t after SP treatment is larger than after LSP treatment.
- SP surface appears to obtain rather sharp edges.

Fatigue test program

- **1.** <u>**Bare</u>**: No surface protection (bare condition milled surface)</u>
- 2. <u>CAA</u>: Aircraft condition: Chromic Acid Anodizing (CAA)
- 3. <u>SP</u>: Shot Peening Alodine
- 4. <u>LSP</u>: Laser Shock Peening Alodine

	R-ratios		
	0.1	-1	-3
<u>Bare</u>	5	5	5
<u>CAA</u>	5	5	5
<u>SP</u>	5	5	5
<u>LSP</u>	5	5	5

Fatigue results – R = 0.1

- Between 10% and 20% larger stresses can be born for SP.
- Between 25% and 35% larger stresses can be born for LSP.

Fatigue results – R = -1

- Around 15% larger stresses can be born for SP.
- Around 30% larger stresses can be born for LSP.

Fatigue results – R = -3

- Around 5% larger stresses can be born for SP.
- Around 15% larger stresses can be born for LSP.

Residual stress profiles – Comparison of treatments

- The compressive residual stresses (RS) reach much deeper in case of the LSP than for the SP treatment.
- "Final pattern" leads to comparable RS as the "first approach".

Impact of RS on crack initiation, or crack growth, or both?

LSP: Impact of RS on crack initiation AND crack growth

- Crack initiation delayed due to the LSP and SP treatment.
- In case of LSP, retarded crack growth up to a crack length of ca. 4 mm.

EADS

Conclusions

- Laser shock peening provides residual stress profiles with compressive residual stresses which are of comparable magnitude as for shot peening, but they reach much deeper into the material.
- Variations of the residual stresses at the surface of the material are leveled out at depths of about 0.3 mm.
- The number of LSP layers and the energy increase the depth of the compressive residual stress regime.
- The roughness of the LSP treated surface is lower than for SP (600 µm steel shots, 0.2 – 0.24 mmA), and free of sharp edges.

cont. Conclusions

- SP specimens are able to bear between 10 % and 20 % larger stresses compared to milled specimens for the tensile fatigue loading with R = 0.1.
- LSP specimens are able to bear between 25 % and 35 % larger stresses for R = 0.1.
- Even in case of prevailing compressive fatigue loading with R = -3, SP and LSP provide a benefit of 5 % and 15 %.
- LSP and SP delay the crack initiation in the same way due to the same level of compressive residual stresses at the surface.
- LSP retards the crack growth up to a crack length which is in the same order as the depth of the compressive residual stress regime.

Thank you very much for your attention!

Questions?