

Application of Surface Residual Stresses for Durability and Damage Tolerance Improvements in Wing Attachment Lugs

Robert Weiss: F-22 PM&PT Engineering, The Boeing Company **Jeffrey Bunch:** F-22 D&DT Engineering, The Boeing Company **Robert Bair:** 478th AESG, United States Air Force **Wirt Garcia:** 478th AESG, United States Air Force

- Opportunity: Structurally enhance wing fillets
 - Increase Aircraft Service Life
 - Increase Fleet Reliability
 - Eliminate Inspections
 - Increase A/C availability

- Glass Bead Peening (GBP)
- Laser Shock Peening (LSP)
- Application
 - Peen During Aircraft Production
 - » Peening prior to active flight (t=0)
 - Peen Aircraft at Depot
 - » Peening after period of active flight (t>0)

LSP Objectives

- Optimize LSP Process for Aircraft Structure
 - Eliminate risk of subsurface initiation
 - No Distortion
- Developed Residual Stress Modeling Techniques Appropriate for frame geometries
- Perform Fatigue Tests
 - Use representative structure
- Define Benefit with Weibull Analysis

- Only minimal a priori LSP knowledge existed for frame configurations
 - Material: Ti-6AI-4V Beta Anneal
- Utilized a scale-up approach

Design Criterion: Subsurface Initiation

- **RED RS Curve**
 - Shows Lowest life SUBSURFACE
- ORANGE RS Curve
 - Follows L3 Life Line; constant life near surface
- GREEN RS Curve
 - Life increases subsurface
- Select ORANGE/GREEN RS Curves

Flat Test Bars / Radii Coupons

BOEING

Lower Intensity LSP Applied to Fatigue Test

- Lower Intensity LSP
 - Initiations examined at 3 different times in fatigue life
 - No Subsurface Initiations Found
- Next Steps:
 - Proceed with Scale-up
 - Predict RS for Lug and Frame

Lug Element Residual Stresses

Low Intensity LSP

•

- Prediction <u>shows no</u> subsurface potential
- Measurement <u>shows</u>
 <u>no</u> subsurface
 potential

High Intensity LSP

- Prediction <u>shows</u>
 subsurface potential
- Measurement <u>shows</u>
 <u>no</u> subsurface
 potential

Frame Residual Stresses

- L-3 L-2 • Low Intensity LSP Prediction Low Intensity LSP Measurement High Intensity LSP Prediction High Intensity LSP Measurement Depth (in)
 - All predictions and measurements show no subsurface potential
 - **Predictions improving** and still slightly conservative
 - **Lower Intensity** Peening shows to be better suited for frame applications
 - Distortion
 - Residual Stress

 Current fleet conditions only allow LSP to be applied on top of GBP

LSP + GBP

I I INF

- Increasing geometries (mass & configuration):
 - Decreased distortion
 - Similar surface compression RS
 - Deeper compression RS layer

Depth (in)

Fatigue Testing

- Lug Elements tested to match frame stress gradient
- Wing Up-bending spectra
- Specimens peened to add LSP compression over tension "hotspots"

- Peening Must be verified with Structural Testing
 - Structured test matrix used to define benefits of each of the following fleet scenarios

(\oslash	BL	TEI	IN	G
	$\boldsymbol{\boldsymbol{\vee}}$				

Baseline	
GBP (t > 0)	
GBP (t = 0)	
LSP (t = 0)	
BP (t > 0), LSP (t >> 0)	
BP (t = 0), LSP (t >> 0)	

Normalized Test Lives

$$\ln(L) = \Lambda = \sum_{i=1}^{F_e} N_i \ln\left[\frac{\beta}{\eta} \left(\frac{T_i}{\eta}\right)^{\beta-1} e^{-\left(\frac{T_i}{\eta}\right)^{\beta}}\right] - \sum_{i=1}^{S} N_i' \left(\frac{T_i'}{\eta}\right)^{\beta}$$

Weibull Maximum Likelihood Function

- •Set β =3 for titanium
- •Solve for η
- F_e is the number of groups of times-to-failure data points
- \mathbf{N}_{i} is the number of times-to-failure in the ith time-to-failure data group
- $\boldsymbol{\beta}$ is the Weibull shape parameter
- $\boldsymbol{\eta}$ is the Weibull scale parameter
- T_i is the time of the ith group of time-to-failure data
- S is the number of groups of suspension data points
- $N_{i}^{\,\prime}$ is the number of suspensions in ith group of suspension data points
- T_i is the time of the ith suspension data group

Weibull Analysis Benefit Factors				
GBP (t>0)	9.0			
GBP (t=0)	6.1			
LSP (t=0)	6.0			
LSP over GBP (t>0)	30.2			
LSP over GBP (t=0)	19.2			

Stress-Life Summary

Solid lines represent a lower 90% Weibull regression on peak stress and accounting for run-outs

- σ-n curves for lugs in wing up-bending
- Budget/Time restricted extended testing
- Significant life improvements available from both peening technologies

Parametric Survival Plot

Normalized Fleet Lives

Areas where cracking risk is not met

- Fleet Risk measures the left tail of a distribution
- Peening technologies keep the left tail very small
- GBP/LSP/GBP+LSP all improve the fleet reliability by significant factors

Crack Growth

- LSP Optimized for Aircraft Applications (wing up-bending spectrum)
 - Distortion & Subsurface cracking mitigated
- Hill Engineering, LLC has developed empirical residual stress prediction models
- GBP & LSP Benefits Defined
 - Reduced Fleet Risk
 - Extended Crack Initiation Life
 - Arrested Crack Growth Rates
- Next Steps: Validate with further Full-scale Frame Testing

Acknowledgements

- 478th AESG
- Lockheed Martin

- Metal Improvement Company
 - Vernon, CA Glass Bead Peening
 - Livermore, CA Laser Shock Peening

m

MARTIN

• Hill Engineering, LLC

D

Solutions for Aircraft Structures

LOCKHEE

www.hill-engineering.com

