

Application of Surface Residual Stresses for Durability and Damage Tolerance Improvements in Wing Attachment Lugs

Robert Weiss: F-22 PM&PT Engineering, The Boeing Company

Jeffrey Bunch: F-22 D&DT Engineering, The Boeing Company

Robert Bair: 478th AESG, United States Air Force Wirt Garcia: 478th AESG, United States Air Force

Structural Life Improvement

- Opportunity: Structurally enhance wing fillets
 - Increase Aircraft Service Life
 - Increase Fleet Reliability
 - Eliminate Inspections
 - Increase A/C availability

Solutions

- Glass Bead Peening (GBP)
- Laser Shock Peening (LSP)
- Application
 - Peen During Aircraft Production
 - » Peening prior to active flight (t=0)
 - Peen Aircraft at Depot
 - » Peening after period of active flight (t>0)

LSP Objectives

- Optimize LSP Process for Aircraft Structure
 - Eliminate risk of subsurface initiation
 - No Distortion
- Developed Residual Stress Modeling Techniques Appropriate for frame geometries
- Perform Fatigue Tests
 - Use representative structure
- Define Benefit with Weibull Analysis

Experimental Layout

- Only minimal a priori LSP knowledge existed for frame configurations
 - Material: Ti-6Al-4V Beta Anneal
- Utilized a scale-up approach

Design Criterion: Subsurface Initiation

- RED RS Curve
 - Shows Lowest life SUBSURFACE
- ORANGE RS Curve
 - Follows L3 Life Line; constant life near surface
- GREEN RS Curve
 - Life increases subsurface
- Select ORANGE/GREEN RS Curves

Depth (in)

Flat Test Bars / Radii Coupons

Lower Intensity LSP Applied to Fatigue Test

- Initiations examined at 3 different times in fatigue life
- No Subsurface Initiations Found
- Next Steps:
 - Proceed with Scale-up
 - Predict RS for Lug and Frame

Residual Stress (ksi)

Lug Element Residual Stresses

Low Intensity LSP

- Prediction shows no subsurface potential
- Measurement showsno subsurfacepotential

High Intensity LSP

- Prediction shows subsurface potential
- Measurement showsno subsurfacepotential

Frame Residual Stresses

- All predictions and measurements show no subsurface potential
- Predictions improving and still slightly conservative
 - Lower Intensity
 Peening shows to be
 better suited for frame
 applications
 - Distortion
 - Residual Stress

 Current fleet conditions only allow LSP to be applied on top of GBP

- LSP + GBP has a small
 subsurface cracking
 vulnerability
- Low intensity chosen to minimize vulnerability
- •Fatigue Tests showed no subsurface cracks

Geometry Effects on Residual Stresses

• Increasing geometries (mass & configuration):

- Decreased distortion
- Similar surface compression RS
- Deeper compression RS layer

Fatigue Testing

- Lug Elements tested to match frame stress gradient
- Wing Up-bending spectra
- Specimens peened to add LSP compression over tension "hotspots"

Test Conditions

- Peening Must be verified with Structural Testing
 - Structured test matrix used to define benefits of each of the following fleet scenarios

Baseline	——— Crack Initiation	1
GBP (t = 0)	GBP -	Crack Initiation
GBP (t > 0)	—— GBP —————	Crack Initiation
LSP (t = 0)		Crack Initiation
GBP ($t = 0$), LSP ($t >> 0$)	GBPLSP	———— Crack Initiation
GBP (t > 0), LSP (t >> 0)	— GBP — LSP	—— Crack Initiation

Crack Initiation Fatigue Results

Baseline

GBP
$$(t > 0)$$

GBP
$$(t = 0)$$

LSP
$$(t = 0)$$

GBP
$$(t > 0)$$
, LSP $(t >> 0)$

GBP
$$(t = 0)$$
, LSP $(t >> 0)$

Normalized Test Lives

Weibull Crack Initiation Analysis

$$\ln(L) = \Lambda = \sum_{i=1}^{F_e} N_i \ln \left[\frac{\beta}{\eta} \left(\frac{T_i}{\eta} \right)^{\beta-1} e^{-\left(\frac{T_i}{\eta}\right)^{\beta}} \right] - \sum_{i=1}^{S} N_i' \left(\frac{T_i'}{\eta} \right)^{\beta}$$

Weibull Maximum Likelihood Function

- •Set β=3 for titanium
- •Solve for η

F_e is the number of groups of times-to-failure data points

N_i is the number of times-to-failure in the ith time-to-failure data group

β is the Weibull shape parameter

η is the Weibull scale parameter

T_i is the time of the ith group of time-to-failure data

S is the number of groups of suspension data points

N_i is the number of suspensions in ith group of suspension data points

T_i' is the time of the ith suspension data group

Weibull Analysis Benefit Factors		
GBP (t>0)	9.0	
GBP (t=0)	6.1	
LSP (t=0)	6.0	
LSP over GBP (t>0)	30.2	
LSP over GBP (t=0)	19.2	

Stress-Life Summary

- σ-n curves for lugs in wing up-bending
- Budget/Time restricted extended testing
- Significant life improvements available from both peening technologies

Solid lines represent a lower 90% Weibull regression on peak stress and accounting for run-outs

Crack Initiation Risk Analysis

Parametric Survival Plot

- **Normalized Fleet Lives**

Areas where cracking risk is not met

- Fleet Risk measures the left tail of a distribution
- Peening technologies keep the left tail very small
- GBP/LSP/GBP+LSP all improve the fleet reliability by significant factors

Crack Growth

Summary

- LSP Optimized for Aircraft Applications (wing up-bending spectrum)
 - Distortion & Subsurface cracking mitigated
- Hill Engineering, LLC has developed empirical residual stress prediction models
- GBP & LSP Benefits Defined
 - Reduced Fleet Risk
 - Extended Crack Initiation Life
 - Arrested Crack Growth Rates
- Next Steps: Validate with further Full-scale Frame Testing

Acknowledgements

478th AESG

Lockheed Martin

- Metal Improvement Company
 - Vernon, CA Glass Bead Peening
 - Livermore, CA Laser Shock Peening

Hill Engineering, LLC

