HOME / ENGINEERED COATINGS / THERMAL, PLASMA, & HVOF SPRAY COATINGS

SURFACE TECHNOLOGIES

THERMAL SPRAY COATING

Curtiss-Wright’s thermal spray coating service options produce cost-effective and high-performing coating that protects components from heat, wear, corrosion, fatigue, and oxidation. 

Thermal spray coating can repair damaged and worn components to original specifications.

Thermal Spray Coating Applications:

Component Families

  • Gas turbine engines 
  • Intake section (cold)
  • Compression section (cold)
  • Combustion section (hot)
  • Exhaust (hot)
  • Ball Valves
  • Compressor Cylinders
  • Autoclave Mixing Blades
  • Compressor blades and vanes
  • Combustion flame tubes
  • Honeycomb seals
  • Power turbine discs
  • Nozzles
  • Rings and seals
  • Balls and Seats
  • Cylinders
  • Shafts
  • Mixing Blades

Houston, Texas

25 Southbelt Industrial Dr.
Houston, TX 77047
T: 713-225-0010
E: info@cwst.com

Wilmington, MA

201 Ballardvale Street
Wilmington, MA 01887
T: 978-658-0032
E: info@cwst.com

East Windsor, CT

12 Thompson Road
East Windsor, CT 06088
T: 860-623-9902
E: info@cwst.com

Phoenix, AZ

3626 W Osborn Rd
Phoenix, AZ 85019
T: 602-244-2432
E: info@cwst.com

United Kingdom - Alfreton

CCRS, Units 1-4 Lydford Road
Alfreton, Derbyshire DE55 7RQ
T: +44 (0) 1773 546656
E: David.mclean@cwst.com

United Kingdom - Derby

Ascot Drive, Derby DE24 8ST
T: +44 (0) 1332-756076
E: mic.derby@cwst.com

Thermal Spray Coating - Benefits

There are a number of benefits in using thermal spray technology over more traditional coating methods and these include:

  • Versatility – choice of coatings include metals, alloys, ceramics and carbides among others.
  • Protection –  against wear, corrosion, fatigue, oxidation and high temperatures depending on the coating used in the process.
  • Temperature Control – bulk substrate to 200°C or less avoiding any detrimental effects of heat on the substrate material properties.
  • Thickness Control – processes are easily controlled and can be used to restore the dimensions of a worn part or incorrectly machined component.
  • Robotic Animation – Complex shapes can be coated as the robotic automation allows for uniform coating of multifaceted parts.
  • Bond Strength – excellent bond strength which can withstand extreme mechanical loads and severe wear situations.

Thermal Spray Coating - Types

  • Combustion Wire Thermal Spray
  • Plasma Spraying
  • HVOF – High-Velocity Oxygen Fuel
  • Arc Spraying – Electric Arc Wire
  • Combustion Powder Thermal Spray

Thermal Spray Coating Process

  1. Powder particles (typically 20 to 120 microns) are heated to a molten or semi-molten state and are propelled at the substrate at high temperature and velocity. 
  2. The molten particles form a “splat” on the surface, which contracts as it cools to form a strong bond with the surface.
  3. Subsequent splats build up in layers to generate the required thickness and density.

Thermal Spray Coating - CWST Expertise

Thermal Management

Thermal Barrier Coatings can maximize turbine efficiency by allowing higher firing temperatures while reducing component thermal fatigue, warpage, oxidation and cracking. The combination of ceramic and super alloy constituents in GPX Thermal Barrier Coatings reflects heat back into the combustion gas path and insulates parts, effectively lowering their surface temperatures.

Wear Control

Wear due to vibration, friction, thermal gradients and pressure shortens the life of turbomachinery components. And if left unchecked, can cause expensive unscheduled outages. Coating that controls wear can prolong the life of critical turbomachinery parts by as much as 10 times. Anywhere metal touches metal is a candidate for Wear Control coatings.

Corrosion Control - Low Temperature

Corrosion of turbomachinery components costs operators billions of dollars every year through premature part failure and induced aerodynamic drag. Coatings for corrosion control can dramatically reduce corrosion damage while providing a smooth aerodynamic surface on compressor blades and stator assemblies. Tough CWST Coatings also provide resistance to erosion from dust and high velocity gases.

Corrosion Control - High Temperature

Turbine components exposed to corrosion at high temperatures (+ 1,000 °F) not only degrade faster than at lower temperatures, but also are subjected to cracking due to thermal fatigue and cycling. High Temperature Coatings are diffused into the substrate, creating a nearly impermeable oxide surface which can reduce scaling and cracks due to thermal cycling.

Oxidation Control

High temperature oxidation is a condition in gas turbines most responsible for premature failure of “hot section” components. As designers continue to raise turbine firing temperatures, super alloy components are nearing their theoretical limits. Oxidation Resistant Coatings are extending these limits by impeding oxygen penetration of the component surface while providing a sacrificial layer capable of protecting the part between overhauls.

Solid Particle Erosion Control

Solid particle erosion claims tons of steam turbine components every year and is most responsible for premature turbine failure. Often coupled with foreign object damage, solid particle erosion can be controlled effectively when temperature, impingement angle, velocity and size of erosion particles have been considered. Solid Particle Erosion Coatings are specifically designed and tested for this environment and have proven effective in extending the life of critical steam turbine parts.

Thermal Spray Coating FAQs

Does the Curtiss-Wright Surface Technologies Houston, Texas facility handle thermal spray coating and solid film lubricants?
The Houston, TX facility does both spray coating and solid film lubricants.  The location is 25 Southbelt Industrial Drive, Houston, TX, 77047.

What other surface technology services are handled at the Houston, TX facility?
Thermal spray coatings are performed, including High Velocity Oxy-Fuel Spray (HVOC), plasma spray, wire arc spray, electric arc spray, flame spray, and fused coatings.  Additionally, the Houston, TX facility is able to perform vacuum heat treatment, bake out, annealing/quenching, Manual and CNC machine for lathes, VTL, and Mills, Fiber laser cladding OD/ID, PTA systems, Grinding/Lapping of OD, ID, Surface, Spherical and Mate lapping of MSB valves.

Are Metallurgical Lab Testing services performed at the Houston, TX facility?
Houston, TX can peform the following metallurgical lab testing services: sample preparation, microscopic evaluation, bend testing, micrographic evaluation, thickness determination, photomicrograph, failure analysis, tensile testing, Rockwell (macro) and microhardness testing, and surface roughness measurements.

Houston, Texas

25 Southbelt Industrial Dr.
Houston, TX 77047
T: 713-225-0010
E: info@cwst.com

Contact Us